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Replica symmetric evaluation of the information transfer in a two-layer network
in the presence of continuous and discrete stimuli

Valeria Del Prete and Alessandro Treves
SISSA, Programme in Neuroscience, via Beirut 4, 34014 Trieste, Italy

~Received 29 July 2001; revised manuscript received 14 December 2001; published 4 April 2002!

In a previous paper we have evaluated analytically the mutual information between the firing rates ofN
independent units and a set of multidimensional continuous and discrete stimuli, for a finite population size and
in the limit of large noise. Here, we extend the analysis to the case of two interconnected populations, where
input units activate output ones via Gaussian weights and a threshold linear transfer function. We evaluate the
information carried by a population ofM output units, again about continuous and discrete correlates. The
mutual information is evaluated solving saddle-point equations under the assumption of replica symmetry, a
method that, by taking into account only the term linear inN of the input information, is equivalent to
assuming the noise to be large. Within this limitation, we analyze the dependence of the information on the
ratio M /N, on the selectivity of the input units and on the level of the output noise. We show analytically, and
confirm numerically, that in the limit of a linear transfer function and of a small ratio between output and input
noise, the output information approaches asymptotically the information carried in input. Finally, we show that
the information loss in output does not depend much on the structure of the stimulus, whether purely continu-
ous, purely discrete or mixed, but only on the position of the threshold nonlinearity, and on the ratio between
input and output noise.

DOI: 10.1103/PhysRevE.65.041918 PACS number~s!: 87.19.La, 87.18.Sn
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I. INTRODUCTION

Recent analyses of extracellular recordings performed
two motor areas of behaving monkeys have tried to cla
how information about movements is transmitted and
ceived from higher to lower stages of processing, and
identify distinct roles of the two areas in the planning a
execution of movements@1#. Although this study failed to
produce clearcut results, it remains interesting to try and
derstand, from a more theoretical point of view, how info
mation about multidimensional correlates of neural activ
may be transmitted from the input to the output of a sim
network. In fact, a theoretical study is still lacking, whic
explores how the coding of stimuli with continuous as w
as discrete dimensions is transferred across a network.

Information theory@2# has been widely used in the theo
of communication, in presence of both binary@3–5# and lin-
ear @6,7# or weakly nonlinear@8# channels. Moreover it ha
been recently proposed as an effective tool to explore
coding properties of neurons~see, for example,@9–11#!, via
both direct estimates from real data~for a review, see@12#!
and pure theoretical modeling@17,14,18,15,16,13#.

The mutual informationprovides a quantitative and flex
ible measure of the efficiency of single cells or of populati
of cells in coding external stimuli and events relevant
behavior: high values of the mutual information are obtain
when the correlates can be discriminated with a small un
tainty on the basis of the neural responses; moreover
same formalism can be adapted to explore different type
code, from simple time-averaged rates, to more sophistic
descriptions, where the exact temporal sequence of ac
potentials is considered to be relevant.

In a previous paper@13# the mutual information betwee
1063-651X/2002/65~4!/041918~11!/$20.00 65 0419
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the time-averaged rates of a finite population ofN units and
a set of correlates, which have both a discrete and a cont
ous angular dimension, has been evaluated analytically in
limit of large noise. This parameterization of the correla
can be applied to movements performed in a given direc
and classified according to different ‘‘types;’’ yet it is equal
applicable to other correlates, such as visual stimuli cha
terized by an orientation and a discrete feature~color, shape,
etc.!, or, in general, to any correlate that can be identified
an angle and a ‘‘type.’’ In this study, we extend the analy
performed for one population, to consider two interco
nected areas, and we evaluate the mutual information
tween the firing rates of a finite population ofM output neu-
rons and a set of continuous and discrete stimuli, given
the rate distribution in input is known. In input, a thresho
nonlinearity has been shown to lower the information ab
the stimuli in a simple manner, which can be expressed
renormalization of the noise@13#. How does the information
in the output depend on the same nonlinearity? How doe
depend on the noise in the output units? Is the informat
transmission from input to output sensitive to the structure
the correlate, whether discrete or continuous?

We address these issues by calculating the mutual in
mation, using the replica trick and under the assumption
replica symmetry~see, for example,@19#!.

Saddle-point equations are solved numerically. We a
lyze how the information transmission depends on the
rameters of the model, i.e., the level of output and inp
noise, on the ratio between the two population sizes, as
as on the tuning curve with respect to the continuous co
late, and on number of discrete correlates.

The input-output transfer function is a crucial element
the model. Many earlier theoretical and simulation stud
@20# have mainly focused on binary and the sigmoidal fun
©2002 The American Physical Society18-1
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tions; yet more recent investigations@21,22# have shown that
the current-to-frequency transduction typical of real neur
is well captured, away from saturation, by a threshold-lin
function. Such a function combines the threshold of real n
rons, the linear behavior typical of pyramidal neurons abo
threshold, and the accessibility to a full analytical treatm
@23,14#, as demonstrated here, too. For the sake of analy
feasibility, however, we take the input units to be pure
Gaussian. Therefore it should be kept in mind, in consider
the final results, that the threshold nonlinearity is only a
plied to the output units.

II. THE MODEL

In analogy to the model studied in Ref.@13# we consider
a set ofN input units that fire to an external continuous a
discrete stimulus, parameterized by an angleq and a discrete
variables, with a Gaussian distribution,

p~$h j%uq,s!5)
j 51

N
1

A2ps2
exp„2$@h j2h̃ j~q,s!#2/2s2%…,

~1!

h j is the firing rate in one trial of thej th input neuron, while
the mean of the distribution,h̃ j (q,s) is written as

h̃ j~q,s!5«s
j h̄ j~q!1~12«s

j !h f , ~2!

h̄ j~q2q j
0!5h0 cos2mS q2q j

0

2 D , ~3!

where«s
j is a quenched random variable distributed betwe

0 and 1,q i
0 is the preferred direction for neuroni. According

to Eq. ~2! neurons fire at an average firing rate that mod
lates withq with amplitude«s , or takes a fixed valueh f ,
independently ofq, with amplitude 12«s .

We assume that quenched disorder is uncorrelated
identically distributed across units and across theK discrete
correlates, and that for each neuron all preferred directi
are equally likely:

%~$«s
i %!5)

i ,s
%~«s

i !5@%~«!#NK

%~$q i
0%!5@%~q0!#N5

1

~2p!N
. ~4!

In Ref. @13# it has been shown that a cosinusoidal shap
function as in Eq.~2! is able to capture the main features
directional tuning of real neurons in motor cortex. Moreov
it has been shown that the presence of negative firing rate
the distribution~1!, which is not biologically plausible, doe
not alter information values, with respect to a more realis
choice for the firing distribution, in that it leads to the sam
curves except for a renormalization of the noise.

Output neurons are connected to input neurons via un
related Gaussian connection weightsJi j .
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Each output neuron performs a linear summation of
inputs; the outcome is distorted by a Gaussian distribu
fast noised i and then thresholded, as in the following:

j i5Fj i
01(

j
ci j Ji j h j1d i G1

, i 51•••M , j 51•••N.

~5!

In Eq. ~5! j i
0 is a threshold term,ci j is a ~0,1! binary

variable, with meanc, which expresses the sparsity or dilu
tion of the connectivity matrix, and

^~Ji j !
2&5sJ

2 , ^Ji j &50, ~6!

^~d i !
2&5sd

2 , ^d i&50, ~7!

p~ci j 51!5c,

p~ci j 50!512c, ~8!

@x#15xQ~x!. ~9!

III. ANALYTICAL ESTIMATION OF THE MUTUAL
INFORMATION

We aim at estimating the mutual information between
output patterns of activity and the continuous and discr
stimuli,

I ~$j i%,q ^ s!5K (
s51

K E dqE )
i

dj i p~q,s!p($j i%

3uq,s)log2

p~$j i%uq,s!

p~$j i%! L
«,q0,c,J,d

, ~10!

p~$j i%uq,s!5E )
j

dh j p~$j i%u$h j%!p~$h j%uq,s!,

~11!

where the distributionp($j i%u$h j%) is determined by the
threshold-linear relationship~5!, p($h j%uq,s) is given in Eq.
~1! and ^•••&«,q0,c,J,d is a short notation for the averag
across the quenched variables$«s

i %,$q i
0%,$Ji j %,$ci j % and on

the fast noise$d i%.
Contrary to the other quenched variable

$«s
i %,$q i

0%,$Ji j %,$ci j %, the variabled i in Eq. ~5! is annealed:
integration of relationships~5! across a zero mean Gaussi
distribution ofd i with variancesd

2 yields a Gaussian distri
bution in j i with variancesd

2 .
We assume that the stimuli are equally likelyp(q,s)

51/2pK. Equation~10! can be written as

I ~$j i%,q ^ s!5^H~$j i%uq,s!&q,s2H~$j i%! ~12!

with
8-2



;
ic

REPLICA SYMMETRIC EVALUATION OF THE . . . PHYSICAL REVIEW E 65 041918
^H~$j i%uq,s!&q,s5K (
s
E dqE )

i
dj i p~q,s!p

3~$j i%uq,s!log2 p~$j i%uq,s!L
«,q0,c,J,d

,

~13!

H~$j i%!5K (
s
E dqE )

i
dj i p~q,s!p~$j i%uq,s!

3 log2F(
s8

E dq8p~s8,q8!p

3~$j i%uq8,s8!G L
«,q0,c,J,d

. ~14!

The analytical evaluation of̂H($j i%uq,s)&q,s can be per-
formed inserting Eq.~11! in the expression~13!, and using
the replica trick@19# to get rid of the sums under logarithm
since these sums already multiply the logarithm, all repl
indexes run from 1 up ton11
04191
a

^H~$j i%uq,s!&q,s

5 lim
n→0

1

n ln 2 S K (
s
E dqp~q,s!

3E )
j ,a

dh j
a)

j ,a
p~h j

auq,s!

3E )
i

dj i)
j ,a

p~j i u$h j
a%!L

«,q0,c,J,d

21D . ~15!

To take into account the threshold-linear relation~5! we
consider the following equalities:

E dj i)
a

p~j i u$h j
a%!

5)
a

p~j i50u$h i
a%!1E

0

`

dj i)
a

p~j i u$h i
a%!

5E
2`

0

)
a

dj i
adS j i

a2j i
02(

j
ci j Ji j h j

a2d i
aD

1E
0

`

dj i)
a

dS j i2j i
02(

j
ci j Ji j h j

a2d i
aD . ~16!

Inserting Eq.~16! in Eq. ~15! one obtains
^H~$j i%uq,s!&q,s5 lim
n→0

1

n ln 2 H(s
E dqp~q,s!E )

j ,a
dh j

aK)
j ,a

p~h j
auq,s!L

«,q0
)

i F E
2`

0

)
a

dj i
a

3K)
a

dS j i
a2j i

02(
j

ci j Ji j h j
a2d i

aD L
c,J,d

1E
0

`

dj i K)
a

dS j i2j i
02(

j
ci j Ji j h j

a2d i
aD L

c,J,d
G21J .

~17!

The average across the quenched disorderc,J,d in Eq. ~17! can be performed in a very similar way as shown in Ref.@22#:
using the integral representation for eachd function, Gaussian integration acrossJ,d is standard; the average on$ci j % can be
performed assuming large the numberN of input neurons, that is for very smallc. The final outcome for̂H($j i%uq,s)&q,s
reads

^H~$j i%uq,s!&q,s5 lim
n→0

1

n ln 2 S (s
E dqp~q,s!E )

j ,a
dh j

a

3K)
j ,a

p~h j
auq,s!L

«,q0
H E

2`

0

)
a

djaE )
a

dxa

2p
expF2~sd

2/2!(
a

~xa!2G
3expF2~CsJ

2/2N!(
a,b

xaxb(
j

h j
ah j

be2 i(
a

~ja2j0!xaG
1E

0

`

djE )
a

dxa

2p
expF2~sd

2/2!(
a

~xa!2GexpF2~CsJ
2/2N!(

a,b
xaxb(

j
h j

ah j
bG

3expF2 i ~j2j0!(
a

xaG J M

21D , ~18!

where we have putc→C/N.
8-3
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Integration on$xa% is straightforward. Integration on$h i
a% can be performed introducing (n11)2 auxiliary variableszab

5(1/N)( jh j
ah j

b via d functions expressed in their integral representation. Considering the expression~1! for the input
distribution and with some rearrangement of the terms the final result can be expressed as

^H~$j i%uq,s!&q,s5 lim
n→0

1

n ln 2 S E )
a,b

dzab

2p/NE )
a,b

dz̃ab expF iN(
ab

zabz̃abGe2(N/2)Tr ln S

3(
s
E dqp~q,s!K expF2(

a,b
~dab2Sab

21!h̃~q,s!2/2s2G L
«,q0

N

e2(M /2)Tr ln G

3H E
2`

0

)
a

dja

A2p
expF2(

a,b
~ja2j0!~Gab

21/2!~jb2j0!G
1E

0

` dj

~2p!(n11)/2
expF2(

a,b
~Gab

21/2!~j2j0!2G J M

21D , ~19!

where

Sab5dab12s2i z̃ab ,

Gab5sd
2dab1CsJ

2zab . ~20!

The evaluation ofH($j i%), Eq. ~14!, can be carried out in a very similar way, introducing replicas in the continuous
discrete stimulus space. The final result reads

H~$j i%!5 lim
n→0

1

n ln 2 S E )
a,b

dzab

2p/NE )
a,b

dz̃ab expF iN(
ab

zabz̃abGe21/2 Tr ln S (
s1•••sn11

E dq1•••dqn11@p~q,s!#n11

3K expF2(
a,b

~dab2Sab
21!h̃~qa ,sa!h̃~qb ,sb!/2s2G L

«,q0

N

expF2
M

2
Tr ln GG

3H E
2`

0

)
a

dja

A2p
expF2(

a,b
~ja2j0!~Gab

21/2!~jb2j0!G1E
0

` dj

~2p!(n11)/2
expF2(

a,b
~Gab

21/2!~j2j0!2G J M

21D .

~21!
e

-

ric
ld-

iled
of

lse-
ve
be
on.
x-
IV. REPLICA SYMMETRIC SOLUTION

The integrals in Eq.~19! and~21! cannot be solved with-
out resorting to an approximation. In analogy to what is us
in Refs.@14,22#, we use a saddle-point approximation~which
in general would be valid in the limitM ,N→`) and we
assume replica symmetry@19# in the parameters

$zab%, $z̃ab%. This allows to explicitly invert and diagonal
ize the matricesG,S

zaa5z0~n!, zaÞb5z1~n!,

i z̃aa5 z̃0~n!, i z̃aÞb52 z̃1~n!. ~22!

In Ref. @22# it has been shown that the replica symmet
~RS! solution for the information transmitted by a thresho
04191
d

linear net is stable in most of the phase diagram. A deta
study of the stability of the RS solution in the specific case
mixed continuous and discrete stimuli will be presented e
where @24#. The saddle-point approximation seems to ha
more subtle implications in the present situation, as it will
discussed in the following section and in the final discussi

In replica symmetry the mutual information can be e
pressed as follows:

I ~$j i%,q ^ s!5 lim
n→0

1

n ln 2 H expS NH ~n11!z0
Az̃0

A2n~n11!

3z1
Az̃1

A2
r

2
@Tr ln G~z0

A ,z1
A!1F~z0

A ,z1
A!#

2
1

2
Tr ln S~ z̃0

A ,z̃1
A!2HA~ z̃0

A ,z̃1
A!J D
8-4
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2expS NF ~n11!z0
Bz̃0

B2n~n11!z1
Bz̃1

B

2
r

2
@Tr ln G~z0

B ,z1
B!1F~z0

B ,z1
B!#

2
1

2
Tr ln S~ z̃0

B ,z̃1
B!2HB~ z̃0

B ,z̃1
B!G D J , ~23!

with

F~z0 ,z1!522 lnH E
2`

0

)
a

dja

A2p
expF2(

a,b
~ja2j0!

3~Gab
21/2!~jb2j0!G1E

0

` dj

~2p!n11/2

3expF2(
a,b

~Gab
21/2!~j2j0!2G J , ~24!

HA~ z̃0 ,z̃1!52
1

N
lnH(s

E dqp~q,s!

3K expF2(
a,b

~dab

2Sab
21!h̃~q,s!2/2s2G L

«,q0

N J , ~25!

HB~ z̃0 ,z̃1!52
1

N
lnH (

s1•••sn11

E dq1•••dqn11

3@p~q,s!#n11K expF2(
a,b

~dab2Sab
21!

3h̃~qa ,sa!h̃~qb ,sb!/2s2G L
«,q0

N J . ~26!

We have setr 5M /N and z0
A,B , z̃0

A,B , z1
A,B , z̃1

A,B are the
solutions of the saddle-point equations

z0
A,B5

]

] z̃0
F1

2
Tr lnS~ z̃0 ,z̃1!1HA,B~ z̃0 ,z̃1!G ,

z1
A,B52

1

n

]

] z̃1
F1

2
Tr ln S~ z̃0 ,z̃1!1HA,B~ z̃0 ,z̃1!G ,

~27!

z̃0
A,B5

]

]z0

r

2
@Tr lnG~z0 ,z1!1F~z0 ,z1!#,

z̃1
A,B52

1

n

]

]z1

r

2
@Tr ln G~z0 ,z1!1F~z0 ,z1!#.
04191
All the equations must be evaluated in the limitn→0. It
is easy to check that all terms in the exponent in Eq.~23! are
ordern. In fact, since whenn→0 only one replica remains
one has

lim
n→0

Tr ln G~z0 ,z1!1F~z0 ,z1!

50→Tr ln G~z0 ,z1!1F~z0 ,z1!

.n
]

]n
@Tr ln G~z0 ,z1!1F~z0 ,z1!# un50

. ~28!

Therefore, from the saddle-point equations,z̃0
A,B are order

n and Tr lnS is also ordern

Tr ln S.n
]

]n
Tr ln S un50

. ~29!

Sincez̃0
A,B5nz50

A,B , it is easy to check by explicit evalua
tion that, whenn→0, all the (n11) diagonal terms among
the matrix elements$dab2Sab

21% are ordern and all the
n(n11) out-of-diagonal terms are order 1. Then all terms
the exponent of Eqs.~25! and ~26! are ordern, and we can
expand the exponentials, which allows us to perform
quenched averages across$«,q0%. Considering the expres
sion of h̃(q,s), Eq. ~2!, one obtains

HA~ z̃0
A ,z̃1

A!.n~z50
A2 z̃1

A!Lh
1 ,

HB~ z̃0
B ,z̃1

B!.nS ~z50
B2 z̃1

B!Lh
11

z̃1
B

112s2z̃1
B

@Lh
12Lh

2 # D ,

~30!

Lh
15(

s
E dqp~s,q!^@h̃~q,s!#2&«,q05~h0!2@~A21a2

22aA1!^«2&«1a212a~A12a!^«&«#, ~31!

Lh
25 (

s1 ,s2

E dq1dq2@p~s,q!#2^h̃~q1 ,s1!h̃~q2 ,s2!&«,q0

5~h0!2F ~A12a!2S K21

K
^«&«

21
1

K
^«2&«D1a2

12a~A12a!^«&«G , ~32!

A15
1

22m S 2m

m D , A25
1

24m S 4m

2mD , a5
h f

h0
. ~33!

A similar expansion in n for Tr ln S(z̃0,z̃1) and for
Tr ln G(z0,z1)1F(z0,z1) allows to derive explicitly the saddle
point equations

z0
A,B5s21Lh

1 ,
8-5
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z1
A5

2s4z̃1
A

2s2z̃1
A11

1Lh
1 ,

~34!

z1
B5

2s4z̃1
B

2s2z̃1
B11

1F12
1

~112s2z̃1
B!2GLh

1

1
1

~112s2z̃1
B!2

Lh
2 ,

z̃1
A,B52CsJ

2 r

2 H sS j0

Ap1q
D j0

~p1q!3/2
2

1

p
erfS j0

Ap1q
D

1E
2`

`

DtH 11 lnFerfS 2
j02tAq

Ap
D G J

3sS j02tAq

Ap
D 1

p3/2F j02t
q1p

Aq
G J ,

where

erf~x!5E
2`

x

Dx85E
2`

x

dx8s~x8!, s~x!5
1

A2p
e2x2/2,

p5sd
21CsJ

2~z02z1!, q5CsJ
2z1 .

From the expression ofz0
A,B in Eq. ~34!, it is easy to verify

that the dependence onz50
A,B in Eq. ~30!, which might affect

the information in Eq.~23!, cancels out with the product
z0

Az50
A ,z0

Bz50
B that should contribute to the information in th

limit n→0 @see Eq.~23!#. Therefore, sincez0
A,B is known and

z1
A,B depends only onz̃1

A,B , the mutual information can be

expressed as a function ofz1
A,B ,z̃1

A,B , which in turn are to be
determined self-consistently by the saddle-point equation

The average information per input cell can be writte
finally

I

N
~$j i%,q ^ s!5

1

ln 2
$z̃1

Bz1
B2 z̃1

Az1
A1r @G1~z0

B ,z1
B!

2G1~z0
A ,z1

A!#1G2
B~ z̃1

B!2G2
A~ z̃1

A!%,

~35!

with

G1~z0 ,z1!52sS j0

Ap1q
D j0p

2~p1q!3/2
1

1

2
ln p erfS j0

Ap1q
D

2E
2`

`

Dt erfS 2
j02tAq

Ap
D

3 lnFerfS 2
j02tAq

Ap
D G , ~36!
04191
.
,

G2
A~ z̃1

A!51
1

2
ln~112s2z̃1

A!2 z̃1
A~s21Lh

1 !, ~37!

G2
B~ z̃1

B!5
1

2
ln~112s2z̃1

B!2 z̃1
B~s21Lh

1 !

1
z̃1

B

112s2z̃1
B

@Lh
12Lh

2 #. ~38!

The expression for the mutual information only contai
terms linear in eitherN or M. Since the last of the saddle
point equations, Eq.~34!, containsr, if one fixesN and in-
creasesM the information grows nonlinearly, because t
position of the saddle point varies. It turns out that, as sho
below, the growth is only very weakly sublinear, at lea
whenM<N. Analogously, fixingM and varyingN we would
find a nonlinearity due to ther dependence of the sadd
point. If r is fixed andN andM grow together, the informa-
tion rises purely linearly.

What our analytical treatment misses out, however, is
nonlinearity required to appear as the mutual informat
approaches its ceiling, the entropy of the stimulus set. T
approach to this saturating value was described at the in
stage@15,16#, where also the initial linear rise~in N) was
obtained in the large noise limit@13,15#. Our saddle-point
method is in same sense similar to taking a large~input!
noise limit, s→`, to its leading~order N/s2) term. It is
possible that the saddle-point method could be extended
account also for successive terms in a large noise expan
This would probably require integrating out the fluctuatio
around the saddle point, but by carefully analyzing the re
tion of different replicas to different values of the quench
variables. We leave this possible extension to future wo
The present calculation, therefore, although employing
saddle-point method that is usually applicable for largeN
andM, should be considered effectively as yielding the in
tial linear rise in the mutual information, the one observ
with M small.

V. NUMERICAL RESULTS

Equation~34! for z̃1
A,B has been solved numerically usin

a MATLAB Code. Convergence to self-consistency has b
found already after 50 iterations with an error lower th
10210.

Figure 1 shows the mutual information as a function
the output population size, for an input population size eq
to 100 cells. This is contrasted with the information in t
input units, about exactly the same set of correlates, ca
lated as in Ref.@13#, by keeping only the leading~linear!
term inN. In fact, in Ref.@13# the mutual information carried
by a finite population of neurons firing according to Eq.~1!
had been evaluated analytically, in the limit of large noise,
means of an expansion inN(h0)2/4s2. To linear order inN
the analytical expression for the information carried byN
input neurons reads
8-6
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I input~$h j%,q ^ s!5
1

ln 2

N

2s2
~Lh

12Lh
2 !, ~39!

whereLh
1 , Lh

2 are defined, again, as in Eqs.~31! and ~32!.
In analogy to what had been done in Ref.@14# we have set
CsJ

251. As evident from the graph, also the output inform
tion is essentially linear up to a value ofr .0.5, and quasi-
linear even forr 51. It should be reminded, again, that o
saddle-point method only takes into account the term lin
in N in the informationinput units carry about the stimulus
It is not possible, therefore, for Eq.~35! to reproduce the
saturation in the mutual information as it approaches the
tropy of the stimulus set~which is finite, if one considers
only discrete stimuli!. The nearly linear behavior inM thus
reflects the linear behavior inN induced, in the intermediate
quantity~the information available at the input stage!, by our
saddle-point approximate evaluation.

As it is clear from the comparison in Fig. 1, when the tw
populations of units are affected by the same noise the in
information is considerably higher than the output one. T
is expected, since output and input noise sum up while in
encing the firing of output neurons, but also because
input distribution is taken to be a pure Gaussian, while
output rates are affected by a threshold. If the input-out
transformation were linear and the output noise mu
smaller than the input one, one would expect that output
input units would carry the same amount of information.

Briefly, in a linear network with zero output noise one h

p~$j i%u$h j%!5)
i

dS j i2(
j

ci j Ji j h j D , ~40!

FIG. 1. Information rise, from Eq.~35!, as a function of the
number M of output neurons.N5100; K54; (h0)250.1; a
50.2; j0520.4; s251; m51; CsJ

251; sd
251. The distribu-

tion %(«) in Eq. ~4! is just equal to 1/3 for each of the three allowe
« values of 0, 1/2, and 1. The upper curve is the linear term in
input information, calculated as a function ofN as in Ref.@13# with
identical parameters.
04191
-

r

n-

ut
s
-
e
e
t

h
d

Considering Eqs.~11! and~1!, aneffectiveexpression for
the distributionp($j i%uq,s) can be obtained by direct inte
gration of thed functionsd(j i2( j ci j Ji j h j ) via their integral
representation, on$h j%

p~$j i%uq,s!

5
1

A~2p!MdetS
e2(

i , j
[ j i2 j̃ i (q,s)](S i j

21)/2[j j 2 j̃ j (q,s)] ,

~41!

j̃ i~q,s!5(
j

ci j Ji j h̃ j~q,s!, ~42!

S i j 5s2(
k

cikJikck j
T Jk j

T , ~43!

This distribution is then used to evaluate both the equi
cation, Eq.~13!, and the entropy of the responses, Eq.~14!.
We do not report the calculation, that is straightforward a
analogous to the one reported in Ref.@13#. The final result,
which is valid for a finite population sizeM, and up to the
linear approximation inM (h0)2/4s2, is analogous to Eq
~39!

I l in~$j i%,q ^ s!5
1

ln 2

M

2s2
~Lh

12Lh
2 !. ~44!

Thus, we expect that taking the limitsj0→` and r→0 si-
multaneously in Eq.~35!, we should get to the same resu
the output information should equal the input one whens2

grows large.
From Eq.~35! it is easy to show that

lim
r→0

lim
j0→`

I ~$j i%,q ^ s!5
1

ln 2

M

2
lnF11

2CsJ
2~Lh

12Lh
2 !

sd
212CsJ

2s2 G .

~45!

When s2@sd
2 ,Lh

1 ,Lh
2 one obtains exactly the linear limit

Eq. ~44!. We have verified this analytical limit by studyin
numerically the approach to the asymptotic value of the m
tual information. Figure 2 shows the dependence of out
information on the output noisesd

2 , for four different
choices of the~reciprocal of the! threshold,j0. A large value,
j0510, implies linear output units. As expected, the outp
information, which always grows for decreasing values
the output noise, forj0510 approaches asymptotically th
input information. For increasing values of the output noi
the information vanishes with a typical sigmoid curve, wi
its point of inflection when the output matches the inp
noise.

We have then examined how the information in outp
~compared to the input! depends on the numberK of discrete
correlates and on the width of the tuning function~3!, param-
etrized bym, with respect to the continuous correlate. Figu
3 shows a comparison between input and output informa
for a sample of 10 cells, as a function ofK. Both curves
quickly reach an asymptotic value, obtained by sett

e

8-7
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K→` in Eq. ~32! for Lh
2 . The relative information loss in

output is roughly constant withK. A comparison is shown
with the case where correlates are purely discrete, whic
obtained by settingm50 in Eq. ~3!. The curves exhibit a
similar behavior, even if the rise withK is steeper, and the
asymptotic values are higher. This may be surprising, but
in fact a consequence of the specific model we have con
ered, Eq.~2!, where a unit has the same tuning curve to ea
of the discrete correlates, only varying its amplitude w

FIG. 2. Output information, from Eq.~35!, as a function of the
output noisesd

2 , for four different values of the output~reciprocal!
thresholdj0. Logarithmic scale.N5100; K54; M510; (h0)2

50.1; a50.2; s251; m51; CsJ
251. The distribution%(«) in

Eq. ~4! is just equal to 1/3 for each of the three allowed« values of
0, 1/2, and 1. The dotted line represents the asymptotic value o
input information, Eq.~39!, for N510.

FIG. 3. Comparison between input and output information a
function of the numberK of discrete correlates, for the case
continuous and discrete correlates (m51) or with purely discrete
correlates~obtained by settingm50). In Eq. ~35! we have setN
5100; r 50.1; j0520.4; (h0)250.1; a50.2; s251; CsJ

251;
sd

251. The distribution%(«) in Eq. ~4! is just equal to 1/3 for each
of the three allowed« values of 0, 1/2, and 1.
04191
is

is
d-
h

respect to a value constant in the angle. AsK→`, most of
the mutual information is about the discrete correlates,
the tuning to the continuous dimension, present form51,
effectively adds noise to the discrimination among discr
cases, noise that is not present form50.

With respect to the continuous dimension, the selectiv
of the input units can be increased by varying the powerm of
the cosine from 0~no selectivity! through 1~very distributed
encoding, as for the discrete correlates! to higher values~pro-
gressively narrower tuning functions!. Figure 4 reports the
resulting behavior of the information in input and in outpu
for the caseK51 ~only a continuous correlate! and K54
~continuous and discrete correlates!. Increasing selectivity
implies a ‘‘sparser’’@21# representation of the angle, the co
tinuous variable, and hence less information, on avera
However, if the correlate is purely continuous there is
initial increase, before reaching the optimal sparseness
should be kept in mind, again, that the asymptotic equality
the K51 andK54 cases is a consequence of the spec
model, Eq.~2!, which assigns the same preferred angle
each discrete correlate. The resolution with which the c
tinuous dimension can be discriminated does not, within t
model, improve with largerK, while the added contribution
of being able to discriminate among discrete correlates,
creases in relative importance as the tuning becomes sha

Figures 3 and 4 show that, as long as the output nois
nonzero and the threshold is finite, information is lost goi
from input to output, but the information loss does not a
pear to depend on the structure and on the dimensionalit
the correlate.

Note that, while the purely continuous case has been
ily obtained by settingK51 in the expression ofLh

2 , Eq.
~32!, for the purely discrete case it is enough to setm50.

he

a

FIG. 4. Comparison between input and output information a
function of the selectivity along the continuous dimension, which
made sharper by increasingm. K51 implies a purely continuous
correlate, while the continuous and discrete case is obtained
setting K54. In Eq. ~35! we have setN5100; r 50.1; j0

520.4; (h0)250.1; a50.2; m51; CsJ
251; sd

25s251, in both
cases. The distribution%(«) in Eq. ~4! is just equal to 1/3 for each
of the three allowed« values of 0, 1/2, and 1.
8-8
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VI. SIMULATION RESULTS: INFORMATION ESTIMATES
VIA DECODING

One way to test the range of validity of our analytic
approximation is via numerical estimates of the informatio
In our specific case where we deal with populations of c
tinuous neurons and with four different sources of quenc
disorder, direct numerical integration is prohibitive. A mo
feasible method is to generate simulated data both in in
and in output and then to estimate the information from
data, resorting to some algorithm.

Many previous studies~revised in Ref.@9#! have shown
that information estimates from data are extremely sensi
to sampling and the distortion is the more serious the lar
is the space of the possible configurations which has to
sampled. In our case where neurons are characterize
their time-averaged continuous firing rates, a simple binn
of the responses into discrete distributions results in a c
siderable distortion, which becomes even more serious s
a sparse sampling is required to perform the average ac
the four quenched distributions.

Several procedures have been proposed to correct the
affecting information estimates; some of them~see@9#! are
based on regularizations such as binning or smoothing; o
ones rely on more theoretical approaches aiming at provid
an analytical expression for the correction@25#. When the
responses vary in a continuum and the population siz
very large it has been suggested that the best estima
obtained viadecoding: the method consists in generating
predictedstimuluss8(rk) from each simulated response ve
tor rk(s) in each trialk, by matchingrk(s) to the average
response vectorsrav(s8), for all stimuli. The predicted stimu
lus will be the one corresponding to the best match.

Summing on all the trials one can derive a probabil
tablep(s,s8); then, the mutual information between the tr
and the pseudostimuli is computed instead of the orig
one, between stimuli and responses

I ~s,s8!5(
s51

p

(
s851

p

P~s,s8!log2

P~s,s8!

P~s!P~s8!
. ~46!

From a theoretical point of view the optimal transformati
to derive the probabilityp(s8ur) is defined by Bayes rule
~Bayesian decoding!

p~rus!p~s!5p~r!p~sur!. ~47!

In our specific case the input distribution is defined in E
~1!, so that relationship~47! can be explicitly inverted; on the
contrary the output distribution is not explicitly known an
one has to fit some function to the responses and to be ab
invert the relationship~47!. Further details about these pro
cedures can be found in Refs.@9,26#.

Figure 5 shows the results of simulations for a sample
20 output cells receiving from 1000 input cells. AMATLAB

code has been used to generate data in an amount of
responses per neuron per stimulus, where we have con
ered the simpler case of four purely discrete stimuli@m50 in
Eq. ~3!#.
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The decoding in output has been optimized choosin
high value for the thresholdj0, so that the single cell outpu
distribution, as derived from the simulated data, could
roughly fitted by a Gaussian. For each population size
have chosen many random subsamples of units out of
whole population, both in input and in output, and we ha
then averaged the information value across subsamp
Quenched averages have been performed resorting
sparse sampling.

The plot shows that the curves obtained via simulatio
~dashed lines! match the analytical prediction~solid lines!
for a very small number of cells, but they deviate when t
number of cells increases; since both the input and the ou
noise are large and the information values are much lo
than the upper bound of 2 bits, this mismatch cannot be
to a deviation from linearity close to the ceiling regime. It
more probably an effect due to the distortion caused by
decoding, which is known to increase with the populati
size. The discrepancy between the true and the decode
formation has also been recently investigated and quant
analytically @27#.

The analytical approximation seems to have a wider
plicability in output, where even for a population size larg
than four to five cells the analytical curve falls within th
error. This is mainly an effect due to the larger error char
terizing the output information, which in turn is due to th
stronger fluctuations in the information values across the
ferent subsamples of cells.

We have checked that the analytical results are alw
confirmed for a population size of one or two cells varyi
the number of discrete correlates and the value of the in
and output noise. We certainly cannot conclude from this t
our analytical approximation is not valid for population siz
larger than two to three cells. On the contrary we are c
rently devising algorithms to reduce the bias in the inform

FIG. 5. Comparison between the analytical approximation~solid
lines! and simulations~dashed lines! for the input and the outpu
information. N51000; K54; r 50.02; j052; (h0)250.1; a
50.1; m50; CsJ

251; sd
25s251. The distribution%(«) in Eq.

~4! is just equal to 1/2 for each of the two allowed« values of
0 and 1.
8-9
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VALERIA DEL PRETE AND ALESSANDRO TREVES PHYSICAL REVIEW E65 041918
tion estimates and preliminary results seem to sugge
much wider range of validity of the analytical approxim
tion. A more detailed study comparing decoding to other
gorithms will be published elsewhere@28#.

VII. DISCUSSION

We have attempted to clarify how information about m
tidimensional stimuli, with both a continuous and a discr
dimension, is transmitted from a population of units with
known coding scheme, down to the next stage of process

Previous studies had focused on the mutual informa
between input and output units in a two-layer thresho
linear network either with learning@14# or with simple ran-
dom connection weights@22#.

More recent investigations have tried to quantify the e
ciency of a population of units in coding a set of discre
@15# or continuous@16# correlates. The analysis in Ref.@15#
has been then generalized to the more realistic case of
tidimensional continuous and discrete correlates@13#.

This work correlates with both research streams, in
effort to define a unique conceptual framework for popu
tion coding. The main difference with the second group
studies is obviously the presence of the network linking in
to output units. The main difference with the first two pape
instead, is the analysis of a distinct mutual information qu
tity: not between input and output units, but between cor
lates ~‘‘stimuli’’ ! and output units. In Ref.@15# it had been
argued, for a numberK of purely discrete correlates, that th
information about the stimuli reduces to the informatio
about the ‘‘reference’’ neural activity whenK→`. The ref-
erence activity is simply the mean response to a given sti
lus when the information is measured from the variab
noisy responses around that means; or it can be taken t
the stored pattern of activity, when the retrieval of such p
terns is considered, as in Ref.@14#. True, the information
about the stimuli saturates at the entropy of the stimulus
but for K→` this entropy diverges, only the linear term inN
is relevant@15#, and the two quantities, information about th
stimuli and information about the reference activity, co
cide.

Our present saddle-point calculation is only able to c
ture, effectively, the mutual information that is linear in th
number of input units, as mentioned above. It fails to d
scribe the approach to the saturating value, the entropy o
set of correlates, be this finite or infinite. Therefore, ours
close to a calculation of the information about a referen
activity, in our case, the activity of the input units. The r
maining difference is that we can take into account, alb
solely in the linear term, the dependence onK @through the
equation forLh

2 , Eq.~32!#, without having to take the furthe
limit K→`.

Due to the presence of a threshold and of a nonzero
put noise the information in output is lower than that
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input, and we have shown analytically that in the limit of
noiseless, linear input-output transfer function the output
formation tends asymptotically to the input one. We ha
not, however, introduced a threshold in the input units, wh
would be necessary for a fair comparison. In an independ
line of research, recent work@8# has also quantified the con
tribution to the mutual information, in a different model, o
cubic and higher order nonlinearities in the transfer functi
by means of a diagrammatic expansion in a noise param
In Ref. @13# it has been shown that the effect of a threshold
the input units on the input information results merely in
renormalization of the noise. The resulting effect on the o
put information remains to be explored, possibly with simi
methods.

Considering mixed continuous and discrete dimension
our stimulus set, we had been wondering whether the in
mation loss in output depended on the presence or absen
discrete or continuous dimensions in the stimulus structu
We have shown that for a fixed, finite level of noise this lo
does not depend significantly on the structure of the stim
lus, but solely on the relative magnitude of input and outp
noise, and on the position of the output threshold.

Our analytical efforts have been also motivated by
difficulty to perform a simulation study for this specifi
scheme of continuous rate coding in presence of several
tinct sources of quenched disorder. Nonetheless we have
formed some simulations using adecodingprocedure to es-
timate the information from simulated data both in input a
in output. Our results confirm previous findings in that t
distortion due to decoding grows with the population size,
that the simulations confirm the analytical prediction only f
a very small number of cells. We are currently devising n
computational methods to improve the match between
analytical and the simulation results.

Further developments of this analysis include the eval
tion of the output information in presence of learning, in lin
with @14#, and with correlations in the firing of input units.

A recent work has shown that the interplay between sh
and long range connectivities in the Hopfield model leads
a deformation of the phase diagram with the appearanc
novel phases@29#. It would be interesting to introduce sho
and long range connections in our model, and to exam
how the coding efficiency of output neurons depends on
interaction between short and long range connections. T
will be the object of future investigations.
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