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Replica symmetric evaluation of the information transfer in a two-layer network
in the presence of continuous and discrete stimuli
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In a previous paper we have evaluated analytically the mutual information between the firing rates of
independent units and a set of multidimensional continuous and discrete stimuli, for a finite population size and
in the limit of large noise. Here, we extend the analysis to the case of two interconnected populations, where
input units activate output ones via Gaussian weights and a threshold linear transfer function. We evaluate the
information carried by a population &l output units, again about continuous and discrete correlates. The
mutual information is evaluated solving saddle-point equations under the assumption of replica symmetry, a
method that, by taking into account only the term linearNrof the input information, is equivalent to
assuming the noise to be large. Within this limitation, we analyze the dependence of the information on the
ratio M/N, on the selectivity of the input units and on the level of the output noise. We show analytically, and
confirm numerically, that in the limit of a linear transfer function and of a small ratio between output and input
noise, the output information approaches asymptotically the information carried in input. Finally, we show that
the information loss in output does not depend much on the structure of the stimulus, whether purely continu-
ous, purely discrete or mixed, but only on the position of the threshold nonlinearity, and on the ratio between
input and output noise.
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[. INTRODUCTION the time-averaged rates of a finite populatiorNofinits and
a set of correlates, which have both a discrete and a continu-
Recent analyses of extracellular recordings performed i®us angular dimension, has been evaluated analytically in the
two motor areas of behaving monkeys have tried to clarifylimit of large noise. This parameterization of the correlates
how information about movements is transmitted and recan be applied to movements performed in a given direction
ceived from higher to lower stages of processing, and t@nd classified according to different “types;” yet it is equally
identify distinct roles of the two areas in the planning and@PPplicable to other correlates, such as visual stimuli charac-

execution of movementgL]. Although this study failed to terized by an orientation and a discrete featiaaor, shape,

produce clearcut results, it remains interesting to try and un€t¢); Or, in general, to any correlate that can be identified by

derstand, from a more theoretical point of view, how infor- 21 @ngle and a “type.” In this study, we extend the analysis

mation about multidimensional correlates of neural activityﬁgggg“;?e;gr ;):; vegpg\llztlglt’e t?hec?gliﬂzlr ia’}'gm'qnatﬁ;%og;_
may be transmitted from the input to the output of a simple '

: o . .- “tween the firing rates of a finite population Mf output neu-
network. In fact, a thgoreucall study IS still I_ackmg, which rons and a set of continuous and discrete stimuli, given that
explores how the coding of stimuli with continuous as well

di di : - ferred K the rate distribution in input is known. In input, a threshold
as |screte' Imensions Is trans erred across a network. nonlinearity has been shown to lower the information about
Information theory[2] has been widely used in the theory ¢ gtimyli‘in a simple manner, which can be expressed as a

of communication, in presence of both bin&By-5] and lin-  rengrmalization of the noiskl3]. How does the information
ear[6,7] or weakly nonlineaf8] channels. Moreover it has n the output depend on the same nonlinearity? How does it
been recently proposed as an effective tool to explore thgepend on the noise in the output units? Is the information
coding properties of neurorisee, for examplg9-11)), via  transmission from input to output sensitive to the structure of
both direct estimates from real daf@r a review, se¢12])  the correlate, whether discrete or continuous?
and pure theoretical modelirig7,14,18,15,16,13 We address these issues by calculating the mutual infor-
The mutual informationprovides a quantitative and flex- mation, using the replica trick and under the assumption of
ible measure of the efficiency of single cells or of populationreplica symmetry(see, for exampld,19]).
of cells in coding external stimuli and events relevant to Saddle-point equations are solved numerically. We ana-
behavior: high values of the mutual information are obtainedyze how the information transmission depends on the pa-
when the correlates can be discriminated with a small uncerameters of the model, i.e., the level of output and input
tainty on the basis of the neural responses; moreover theoise, on the ratio between the two population sizes, as well
same formalism can be adapted to explore different types ads on the tuning curve with respect to the continuous corre-
code, from simple time-averaged rates, to more sophisticatddte, and on number of discrete correlates.
descriptions, where the exact temporal sequence of action The input-output transfer function is a crucial element in
potentials is considered to be relevant. the model. Many earlier theoretical and simulation studies
In a previous pap€erl3] the mutual information between [20] have mainly focused on binary and the sigmoidal func-
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tions; yet more recent investigatiofsl,22 have shown that Each output neuron performs a linear summation of the
the current-to-frequency transduction typical of real neuronsnputs; the outcome is distorted by a Gaussian distributed
is well captured, away from saturation, by a threshold-linearfast noises; and then thresholded, as in the following:
function. Such a function combines the threshold of real neu-

rons, the linear behavior typical of pyramidal neurons above 0 o _

threshold, and the accessibility to a full analytical treatment ~ &i=| &i +2 cydym | i=1---Mj=1.--N.

[23,14], as demonstrated here, too. For the sake of analytical . (5)
feasibility, however, we take the input units to be purely
Gaussian. Therefore it should be kept in mind, in considering

the final results, that the threshold nonlinearity is only ap'varlir;bllzg.v(vsit)hgrin;n? \t/r\:rruecsr? (él)((jpig:gg tfeasé%rls)itslr;?rgilu-
plied to the output units. y !

tion of the connectivity matrix, and

- THE MODEL (IpA=0a5, (3)=0, ()
In analogy to the model studied in R¢13] we consider
a set ofN input units that fire to an external continuous and ((8)%y=0%, (8)=0, (7)
discrete stimulus, parameterized by an angjlend a discrete
variables, with a Gaussian distribution, —1y—
p(cj=1)=c,
N
| 0,8) = exp(—{[ 7;— 1;(9,9)1%25?}), p(c;j=0)=1-c, ()
p{m}9.9=11 T2 A {ln = (9,920 i
@ [x]" =xO(x). ©
»; is the firing rate in one trial of thgth input neuron, while
the mean of the distributior?yj(ﬁ,s) is written as lll. ANALYTICAL ESTIMATION OF THE MUTUAL
INFORMATION
- = .
7(9,8)=egmi(9) +(1-e9) 7, 2 We aim at estimating the mutual information between the
output patterns of activity and the continuous and discrete

7;(9—97)= 7% cog™

9—0) stimuli,
T])’ )

K
wheree! is a quenched random variable distributed between |({§i},ﬁ®s)=< 21 f di’f II déip(o.s)p{&}
0and 1,19? is the preferred direction for neurenAccording . '

to Eq. (2) neurons fire at an average firing rate that modu- p({&}]9,9)
lates with 9 with amplitudee,, or takes a fixed value', XW'S)IOQZW , (10
independently of§, with amplitude *-¢g. P& £,90,c,9,8

We assume that quenched disorder is uncorrelated and
identically distributed across units and across Khdiscrete
correlates, and that for each neuron all preferred directions p({gi}|1fz‘,s)=f L1 dmp&dimbpdm}l9,s),
are equally likely: : (11)

iy = iy = NK where the distributionp({£;}|{7:}) is determined by the
o({ed)) lll e(=)=le(=)] threshold-linear relationshi(), pJ({ n;}|9,s) is given in Eq.
(1) and (- --). 4035 is @ short notation for the average
across the quenched variablﬁ},{ﬁ?},{Jij},{cij} and on
(4)  the fast nois€ 5;}.

Contrary to the other quenched variables,
és;},{ﬁ?},{Jij},{cij}, the variables; in Eq. (5) is annealed:
Integration of relationshipéb) across a zero mean Gaussian
distribution of &; with varianceafS yields a Gaussian distri-

e({9%) =[e(8") "=

(2mN’

In Ref.[13] it has been shown that a cosinusoidal shape
function as in Eq(2) is able to capture the main features of
directional tuning of real neurons in motor cortex. Moreover = >" "~ ) ] 5
it has been shown that the presence of negative firing rates fpHtion in & with variancess. .
the distribution(1), which is not biologically plausible, does ~ We assume that the stimuli are equally liketyf9,s)
not alter information values, with respect to a more realistic= 1/27K. Equation(10) can be written as
choice for the firing distribution, in that it leads to the same

curves except for a renormalization of the noise. l({&}, 0®@8)=(H({&}9,9)ss—H{ &N (12
Output neurons are connected to input neurons via uncor-
related Gaussian connection weighfs. with
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<H({§i}|ﬁ,s>>a,s=<§ f dﬁf H d&p(9,5)p

X({&H’l&,S)lng p({f.}|19,5)> )

£,99.¢,J,8
(13

H<{§i}>=<§ [ ao [ TT azpco.omiielo.s)

Xlog,

Z fdﬁ’p(s’,ﬂ’)p

X({fi}|ﬂ,’s,)}> (14

£,99¢,3,6

The analytical evaluation qH ({£;}| 9,5)) 5. can be per-
formed inserting Eq(11) in the expressiori13), and using
the replica trick{ 19] to get rid of the sums under logarithm;
since these sums already multiply the logarithm, all replica
indexes run from 1 up to+1

(HUEY 8,9)) g o= lim ———

n—0

nmz[§ fdﬂp(&s)fg dnj“<]_11 p(nrla,s>>
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(H{&H9.9)) 9.5

=lim

1
m<<§ fdap(ﬁ,s)
Xf Jll dm—‘ﬂ p(7{]9,s)

(15

< [ T aall p(gil{nf}>> —1).
I e 6,00,c,0,6

To take into account the threshold-linear relati@n we

consider the following equalities:

f d&ll[ p(&l{ 7

=TT pe=0linh+ [ “a&TT pealinth

0 [

0
+Fd§‘H 5( G-8-2 ¢yl 711“‘(2“)-
0 @ ]

(16)

Inserting Eq.(16) in Eq. (15) one obtains

0
[T der

—% a

d

1
8,1‘)0

(3

X<E[ 5( 662 oy nr—6?)>c’w+ f:dfi<ﬂ a(a—f?—Ej cijJi 77}*—5?)>C’J’J—1]-

17

The average across the quenched disocd®rs in Eq. (17) can be performed in a very similar way as shown in R22]:
using the integral representation for eatfunction, Gaussian integration acrak$ is standard; the average ¢o,;} can be
performed assuming large the numtdéof input neurons, that is for very small The final outcome fo(H({gi}(z?,s»ﬂ,s

reads

1
(H{EN9.9))5,6= nmm(g [ avpios | [T duy

n—0

—% a

><<H p(n;’|ﬁ,s>> {
Jhe e,90

xexp{—(C(ﬁ/ZN)% XxPY, njanjﬁe*iE (E%— Eg)xe
«, J o

® dx“ ) N
+fo dgf 1;[ zex;{—((f&/Z); (x%)2

)

xexp[—i(s—&))E x?

where we have put— C/N.
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Integration on{x®} is straightforward. Integration ofw{"} can be performed introducing ¢ 1)? auxiliary variablesz,,
=(UN)Z; 5"y via & functions expressed in their integral representation. Considering the expréssifor the input

distribution and with some rearrangement of the terms the final result can be expressed as

e (N2)Trins

dz, ~ ~
11 BJ'l_[ﬁ dzaﬁexp{iNaZB ZopZap

a,B 27IN

) 1
(H{&}9,9)) 9,6= lim nin2

n—0

X 25 f dﬂp(ﬁ,s)< exr{ —ZE (8ap—2 ) 1(9,5)%202

N
> e—(M/Z)TrInG
g,90

0 d&” -
x| ;! mexp[—gﬁ(5&—&)(@5/2)(?—&)}
M
] —1), (19

® d
+J % p[—EB (G3/2) (¢ &9)?

0 (2,”_)(n+1)/2ex

where
Eaﬁ: 50,5"' ZUZiEaﬁ y
Gup=050,5FC03Zap. (20)
The evaluation oH({¢}), Eq. (14), can be carried out in a very similar way, introducing replicas in the continuous and

discrete stimulus space. The final result reads

e71/2TrInE Z f df}l' . -df)‘nﬂ[p(f},s)]”“
S1°*Sn+1

) 1 dz.g ~ ) ~
H({gi})_n"f‘o nlnz( yﬁ 27T/Nf g dzaﬁex%”\‘;ﬁ ZapZap
N M
ex —?TrInG
£,90

© d§ ) i
fo Wexp{_;ﬁ (GLpl2)(¢ )

><<exr{—zﬁ (Bap=20p) (0 4,S) 7(Dg,5p) /207

"

(21)

0 dg® -
x| ! \/ﬁexf{_;ﬁ(§a_§o)(Gal/2)(§B_§o) +

IV. REPLICA SYMMETRIC SOLUTION linear net is stable in most of the phase diagram. A detailed

. . . study of the stability of the RS solution in the specific case of

The mt_egrals in Eq(19) .and_(21) cannot be solved V.V'th' ixed continuous and discrete stimuli will be presented else-
.OUt resorting to an approximation. 'U analogy'to what 1S use@chere[m]. The saddle-point approximation seems to have
:2 Rzzsé[r;?,vzv?)h\l,(\;et?esei/ZIi?ja?:l?ﬁgﬂlimiiﬂp%z(gag%ﬁz more subtle implications in the present situation, as it will be
ass?ume replica  symmetry[19] in ’the arameters discussed in the following section and in the final discussion.
P y y P In replica symmetry the mutual information can be ex-

{Zap}, {Eaﬁ}_. This allows to explicitly invert and diagonal- pressed as follows:
ize the matrices3,2,

1 ~
I({&} 0es)=lim — [exp{N‘(nJrl)zézé—n(nJrl)

Zaa:ZO(n)1 Zaqﬁﬁ:zl(n)1 In2
n—0
~ o~ ~ ~ ~n T
1Zao=20(N), 1Zgzp=—121(N). (22) xz’fz’f—z[Trln G(z5,2y)+F(z5.2)]
. . . 1 _— _—
In Ref.[22] it has been shown that the replica symmetric _ ETr In E(ZS,Z?)_ HA(ZS,Z?)U

(RS solution for the information transmitted by a threshold-
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—exp( N

r
~5[Trin G(z5,29) +F(z5.,27)]

All the equations must be evaluated in the limit-0. It
(n+1)z525—n(n+1)z72; is easy to check that all terms in the exponent in @8) are
ordern. In fact, since whem—0 only one replica remains,
one has

limTrinG(zy,21) +F(zy,24)

1 ~ n—0
— —Trin3 (8,28 - HB(ZB,ZB) )] (23
2 0 0ot =0—>Tl’|n G(Zo,zl)+F(Zo,Zl)
i d
with :n&—n[TrIn G(z9,21)+F(29,21)]_,. (29
F(z0,2)=—2 In[ . \/— ’{_ azﬁ (§%=%o) Therefore, from the saddle-point equatioi@sf3 are order
n and TrInY is also ordem
_ * €
XG0+ | ;
g “1 Jo 2mnre TrinS=n—_Triny (29
xex;{ E (Gsl2(& §o)2H : (24) Sincezg'®=nZ8, it is easy to check by explicit evalua-

tion that, whemn—0, all the (1+1) diagonal terms among
1 the matrix elements{éaﬁ—zgﬁl} are ordern and all the
HAZy,21) = — Nln 2 J' ddp(9,s) n(n+ 1) out-of-diagonal terms are order 1. Then all terms in
s the exponent of Eqg25) and(26) are ordem, and we can
expand the exponentials, which allows us to perform the

X<ex’{—2 (6 quenched averages acrdss 9°}. Considering the expres-
ap «p sion of 7(9,s), Eq. (2), one obtains
N
—3 .5 7(9,9)%/20% > ] . (29 HAZG ) =n(Z-Z) A%,
£,90
1 H8(z5,28)=n| (Z5—Z5) A5+ 4 [A5—A%)
~ o~ Z ,Z n —Z - ,
HB(zo,zl)=—NIn[ > fdﬂl- cd g 0t ! 207877 7
“Sn+1 (30)

n+1 _ _v—1
Xp(2.9)] <exp[ 2, (Gup%0p) -3 f d9p(s, (9,90 90= (1)L (Ag+ a2

N
X (D o 1Sa) 7D 5,55 1207 > ] (26) —2ahA;)(s?),+a’+2a(A1— a)(e).], (31
g,90
We have set=M/N andzy'®, 738, 2B, 7B are the 525 d91d 5[ p(s, ) ](7(91,51) 7(D2,52))s, 00
1,92

solutions of the saddle-point equations

K_
=(7°)? (A1~ a)® 2| +a?
A,B 1 >3 ABS 3 K
2= 51rIN%(20,21) +H™"(20,21) |,
0
+2a(A1—a)(e),|, (32
1 ~ ~ ~ ~
A,B_ AB
zy"=———=|5TrIinX(z,2;) + H™"(24,27) |,
1 ¢9Zl 2 ( 0 1) ( 0 1) 1 om 1 am 77f s
(27) 1 22m m 1 2 24m 2m ’ [e4 7]0 ( )
aJar _ . . ~ ~
ZAB= E[TrlnG(ZOyzl)_"F(ZOvzl)L A similar expansion inn for .TrInE(.zol,zl) and for
) Trin G(zy,2)) +F(z,z;) allows to derive explicitly the saddle-
point equations
Z?B _ ﬁaTE[TrIn G(z9,21) +F(z9,21)]. ZQ'B=02+A;,
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ZU‘EQ AL
Z=——rnr—+AL,
V2ol 7

(34)

20°72

= +
20778 +1

2

1 ! Al
(1+20725)%] 7
1
+—AZ,
(1+20%29)% 7
50) £
——er
yp+q/(p+q)¥ P

& )
f
vpt+q

~ r
Zf"BZ —Caﬁz[ o

+ ﬁ;Dt{ 1+In erf( - SOT/IB\/E)H

where

X X 1 2
erf(x):f Dx'zf dx'o(x'), o(x)=-—e X2

V2w

q=Co?z,.

p=03+Coi(z0—2,),

From the expression af'® in Eq.(34), it is easy to verify
that the dependence d§'® in Eq. (30), which might affect

the information in Eq.(23), cancels out with the products

AZA _B3B

252y ,29Z, that should contribute to the information in the

limit n— 0 [see Eq(23)]. Therefore, since,'® is known and

PHYSICAL REVIEW B5 041918

~ 1 -
Io(z)=+ SIn(1+ 2072)) = Z(a?+ A}),  (37)

U | -
rg(z§)=§|n(1+ 20725) = Z5(a?+ A})

z;

————[AY—A?]
1+2022?[ |

n 7

(39

The expression for the mutual information only contains
terms linear in eitheN or M. Since the last of the saddle-
point equations, Eq(34), containsr, if one fixesN and in-
creasesM the information grows nonlinearly, because the
position of the saddle point varies. It turns out that, as shown
below, the growth is only very weakly sublinear, at least
whenM =<N. Analogously, fixingM and varyingN we would
find a nonlinearity due to the dependence of the saddle
point. If r is fixed andN andM grow together, the informa-
tion rises purely linearly.

What our analytical treatment misses out, however, is the
nonlinearity required to appear as the mutual information
approaches its ceiling, the entropy of the stimulus set. The
approach to this saturating value was described at the input
stage[15,16), where also the initial linear risén N) was
obtained in the large noise limjtL3,15. Our saddle-point
method is in same sense similar to taking a latogpul)
noise limit, c—, to its leading(order N/a?) term. It is
possible that the saddle-point method could be extended, to
account also for successive terms in a large noise expansion.
This would probably require integrating out the fluctuations
around the saddle point, but by carefully analyzing the rela-
tion of different replicas to different values of the quenched
variables. We leave this possible extension to future work.

z°® depends only ozy"®, the mutual information can be The present calculation, therefore, although employing a
expressed as a function gf®, 7B, which in turn are to be saddle-point method that is usually applicable for lage

determined self-consistently by the saddle-point equations.andM, should be considered effectively as yielding the ini-
The average information per input cell can be written,tial linear rise in the mutual information, the one observed

finally
| 1 ~5 5 ~an B _B
N({fi},ﬁ@’s):_|n2{2121_2121+r[rl(20121)

—T4(z5,2)1+T5(z)) - T3},

(39
with
rl(zo,zl)z—cr(\/i_q z(piz)g,ﬁilnperf \/Fi_Q)
—J:Dterf - go_f;ﬁ
il e é(’;taﬁﬂ, (36)

with M small.

V. NUMERICAL RESULTS

Equation(34) for Z"® has been solved numerically using
a MATLAB Code. Convergence to self-consistency has been
fouq(g already after 50 iterations with an error lower than
10 .

Figure 1 shows the mutual information as a function of
the output population size, for an input population size equal
to 100 cells. This is contrasted with the information in the
input units, about exactly the same set of correlates, calcu-
lated as in Ref[13], by keeping only the leadinginear
term inN. In fact, in Ref[13] the mutual information carried
by a finite population of neurons firing according to E#).
had been evaluated analytically, in the limit of large noise, by
means of an expansion M(7°)%/40”. To linear order inN
the analytical expression for the information carried My
input neurons reads
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0.5

0.45 —o— input
0.4t
0.35}
0.3t

£o25f
0.2t
0.15}
01t

0.05f

o 5 101520 30 50 100
No. of cells
FIG. 1. Information rise, from Eq(35), as a function of the
number M of output neurons.N=100; K=4; (°%=0.1; «a
=0.2; £€°=-0.4; ¢?=1; m=1; Co5=1; o%=1. The distribu-
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Considering Eqgs(11) and(1), aneffectiveexpression for
the distributionp({&;}|,s) can be obtained by direct inte-
gration of thes functionsé(&;—Zc;;J;; ;) via their integral
representation, ofi;}

pP({&}D,9)
_ me_;] [&-E(0.91(5; 2l - F(0.9]
(41)
Ei(ﬂ,s>=; cijJij 7(9,9), (42
2= 02 CidicCidi (43)

This distribution is then used to evaluate both the equivo-
cation, Eq.(13), and the entropy of the responses, Ef).

tion (&) in Eq. (4) is just equal to 1/3 for each of the three allowed e do not report the calculation, that is straightforward and
& values of 0, 1/2, and 1. The upper curve is the linear term in thétnalogous to the one reported in REE3]. The final result,

input information, calculated as a functionMfas in Ref[13] with
identical parameters.

(39

1 N 1 2
Iinput({ﬂj}:ﬁ@)s): n2 ;‘_Z(AU_AW)’

whereA;, A% are defined, again, as in Eq81) and(32).
In analogy to what had been done in Rlf4] we have set

which is valid for a finite population siz®, and up to the
linear approximation inM(7°)?/402, is analogous to Eq.
(39

M

Lin({&} ﬁ®s)=i (AL—A?) (44)
lin ifs In2 20_2 n 7"

Thus, we expect that taking the limit®—o andr—0 si-
multaneously in Eq(35), we should get to the same result:
the output information should equal the input one wien

Ca§= 1. As evident from the graph, also the output informa-grows large.

tion is essentially linear up to a value pf0.5, and quasi-

linear even for=1. It should be reminded, again, that our
saddle-point method only takes into account the term linear
in N in the informationinput units carry about the stimulus.

It is not possible, therefore, for Eq35) to reproduce the
saturation in the mutual information as it approaches the en-

From Eq.(35) it is easy to show that
2Ca5(AL =A%)

1+
(T%-i— 2Ca’§o’2

L 1 M
lim lim I({gi},ﬂ®s)=m?ln

r_’0§0~>:x3

(45)

tropy of the stimulus setwhich is finite, if one considers When ¢?>¢5,A},A% one obtains exactly the linear limit,

only discrete stimuji The nearly linear behavior iM thus

Eq. (44). We have verified this analytical limit by studying

reflects the linear behavior iN induced, in the intermediate numerically the approach to the asymptotic value of the mu-

guantity(the information available at the input stagley our
saddle-point approximate evaluation.

tual information. Figure 2 shows the dependence of output
information on the output noiser3, for four different

As it is clear from the comparison in Fig. 1, when the two choices of thereciprocal of thgthreshold £°. A large value,
populations of units are affected by the same noise the inpy°= 10, implies linear output units. As expected, the output
information is ConSiderably hlgher than the output one. ThiSnformation’ which a|Ways grows for decreasing values of
is eXpeCted, since Output and input noise sum up while inﬂuthe Output noise' foEO: 10 approaches asymptotica”y the
encing the firing of output neurons, but also because thghput information. For increasing values of the output noise,
input distribution is taken to be a pure Gaussian, while thene information vanishes with a typical sigmoid curve, with
output rates are affected by a threshold. If the input-outpufts point of inflection when the output matches the input
transformation were linear and the output noise muchgijse.
smaller than the input one, one would expect that output and e have then examined how the information in output
input units would carry the same amount of information.  (compared to the inputiepends on the numbirof discrete

Brieﬂy, in a linear network with zero output noise one haSCorre|ateS and on the width of the tuning funct(@h param-
etrized bym, with respect to the continuous correlate. Figure
3 shows a comparison between input and output information
for a sample of 10 cells, as a function Kf Both curves
quickly reach an asymptotic value, obtained by setting

p({'fi}|{77j}):1_i[ 5( fi—Ej? CijJij 77,'>, (40)
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FIG. 2. Output information, from Eq35), as a function of the
output noisarfs, for four different values of the outputeciproca)
threshold £°. Logarithmic scaleN=100; K=4; M=10; (5°)?

FIG. 4. Comparison between input and output information as a
function of the selectivity along the continuous dimension, which is
made sharper by increasimg K=1 implies a purely continuous
=0.1; a=0.2; ¢?=1; m=1; Ca§=1. The distributiong(g) in correlate, while the continuous and discrete case is obtained by
Eq. (4) is just equal to 1/3 for each of the three allowedalues of  setting K=4. In Eq. (35 we have setN=100; r=0.1; &°
0, 1/2, and 1. The dotted line represents the asymptotic value of the —0.4; (°)?=0.1; «=0.2; m=1; CU§= 1; o§= o?=1, in both
input information, Eq(39), for N=10. cases. The distributiop(¢) in Eq. (4) is just equal to 1/3 for each
of the three allowed values of 0, 1/2, and 1.

K—o in Eq. (32) for Afy. The relative information loss in

output is roughly constant witk.. A comparison is shown respect to a value constant in the angle.kas»cc, most of
with the case where correlates are purely discrete, which i mutual information is about the discrete correlates, and
obtained by settingn=0 in Eq. (3). The curves exhibit a the tuning to the continuous dimension, presentrfor 1,
similar behavior, even if the rise witk is steeper, and the €ffectively adds noise to the discrimination among discrete
asymptotic values are higher. This may be surprising, but it i§ases, noise that is not present fo=0.

in fact a consequence of the specific model we have consid- With respect to the continuous dimension, the selectivity
ered, Eq(2), where a unit has the same tuning curve to eact?f the input units can be increased by varying the pomvef

of the discrete correlates, only varying its amplitude withthe cosine from @no selectivity through 1(very distributed

0.09

encoding, as for the discrete correlateshigher valuegpro-
gressively narrower tuning functionsFigure 4 reports the

o inputidiscr resulting behavior of the information in input and in output,
—6— input/cont+discr .
008+ 23&535% deor 1 for the caseK=1 (iny a continuous corre!a)eand Kzlé}
oorl IR | (continuous and discrete correlgtesncreasing selectivity
’ T implies a “sparser’{21] representation of the angle, the con-
0.06| d/‘ ] tinuous variable, and hence less information, on average.
However, if the correlate is purely continuous there is an
Pl —3 initial increase, before reaching the optimal sparseness. It
= s d/’ should be kept in mind, aga_lin, that the asymptotic equality_ c_)f
/ the K=1 andK=4 cases is a consequence of the specific
0.03f S 1 model, Eq.(2), which assigns the same preferred angle to
/ e T T each discrete correlate. The resolution with which the con-
0'02;%‘;;; . ] tinuous dimension can be discriminated does not, within this
ootl /- ’ i model, improve with largeK, while the added contribution,
e of being able to discriminate among discrete correlates, de-
- 2 a s 100000 creases in relative importance as the tuning becomes sharper.

Figures 3 and 4 show that, as long as the output noise is

FIG. 3. Comparison between input and output information as 4'0NZ€ro and the threshold is finite, information is lost going

function of the numbeK of discrete correlates, for the case o
continuous and discrete correlaten=1) or with purely discrete
correlates(obtained by settingn=0). In Eqg. (35 we have seiN
=100; r=0.1; £&°=-0.4; (#°%=0.1; @=0.2; 0?=1; Co5=1;

¢ from input to output, but the information loss does not ap-

pear to depend on the structure and on the dimensionality of
the correlate.
Note that, while the purely continuous case has been eas-

o%=1. The distributioro (&) in Eq. (4) is just equal to 1/3 for each ily obtained by settingK=1 in the expression 01\37, Eq.

of the three allowed values of 0, 1/2, and 1.

(32), for the purely discrete case it is enough to1set 0.
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VI. SIMULATION RESULTS: INFORMATION ESTIMATES 0=
VIA DECODING 0.09_ |
One way to test the range of validity of our analytical | i
approximation is via numerical estimates of the information. 3
In our specific case where we deal with populations of con- %7} 3 T
tinuous neurons and with four different sources of quenchec_ | o |
disorder, direct numerical integration is prohibitive. A more -4
feasible method is to generate simulated data both in inpug®%y g 3
and in output and then to estimate the information from theg | <
data, resorting to some algorithm. <
Many previous studiegrevised in Ref[9]) have shown 0031 = 3 ]
that information estimates from data are extremely sensitive h -
to sampling and the distortion is the more serious the large! -
is the space of the possible configurations which has to be oor o i} 1
sampled. In our case where neurons are characterized b sy , , , , , , ,
their time-averaged continuous firing rates, a simple binning  ° ! 2 & o ° 6 7 8
of the responses into discrete distributions results in a con- . ) o
siderable distortion, which becomes even more serious since FIG. 5. Comparison between the analytical approximatsatid
a sparse sampling is required to perform the average acrogges) an_d simulationgdashed linesfor the0 input argdzthe output
the four quenched distributions. information. N=1000; K=4; r=0.02; £'=2; (7)°=0.1; a
Several procedures have been proposed to correct the bi%o'_l' m=0; Coj=1; o,=0°=1. The distributione(e) in Eq.
affecting information estimates; some of theégee[9]) are 4) is just equal to 1/2 for each of the two allowedvalues of
based on regularizations such as binning or smoothing; otheor and 1.
ones rely on more theoretical approaches aiming at providing o o _
an analytical expression for the correctifs]. When the ~ The decoding in output has been optimized choosing a
responses vary in a continuum and the population size i8igh value for the threshol¢®, so that the single cell output
very large it has been suggested that the best estimate @stribution, as derived from the simulated datg, cogld be
obtained viadecoding the method consists in generating a roughly fitted by a Gaussian. For each population size we
predictedstimuluss’(r,) from each simulated response vec- have chosen many random subsamples of units out of the
tor ri(s) in each trialk, by matchingr,(s) to the average Whole population, both in input and in output, and we have
response vectors,(s'), for all stimuli. The predicted stimu- then averaged the information value across subsamples.
lus will be the one corresponding to the best match. Quenched averages have been performed resorting to a
Summing on all the trials one can derive a probability SParse sampling. _ o _
tablep(s,s'); then, the mutual information between the true  The plot shows that the curves obtained via simulations
and the pseudostimuli is computed instead of the originafdashed linesmatch the analytical predictiofsolid lineg

its)

ion(bi

0.02| ~ s i i

one, between stimuli and responses for a very small number of cells, but they deviate when the
number of cells increases; since both the input and the output
P P P(s,s') noise are large and the information values are much lower
I(s,s)=>, >, P(s,s")logy———. (46)  than the upper bound of 2 bits, this mismatch cannot be due
s=1g'—1 P(s)P(s’) to a deviation from linearity close to the ceiling regime. It is

more probably an effect due to the distortion caused by the
From a theoretical point of view the optimal transformationdecoding, which is known to increase with the population
to derive the probabilityp(s’|r) is defined by Bayes rule size. The discrepancy between the true and the decoded in-

(Bayesian decoding formation has also been recently investigated and quantified
analytically[27].
p(rls)p(s)=p(r)p(s|r). (47) The analytical approximation seems to have a wider ap-

plicability in output, where even for a population size larger
In our specific case the input distribution is defined in Eq.than four to five cells the analytical curve falls within the
(1), so that relationship4d7) can be explicitly inverted; on the error. This is mainly an effect due to the larger error charac-
contrary the output distribution is not explicitly known and terizing the output information, which in turn is due to the
one has to fit some function to the responses and to be able stronger fluctuations in the information values across the dif-
invert the relationshig47). Further details about these pro- ferent subsamples of cells.
cedures can be found in Ref$,26]. We have checked that the analytical results are always
Figure 5 shows the results of simulations for a sample otonfirmed for a population size of one or two cells varying
20 output cells receiving from 1000 input cells.MTLAB the number of discrete correlates and the value of the input
code has been used to generate data in an amount of 20@8d output noise. We certainly cannot conclude from this that
responses per neuron per stimulus, where we have considur analytical approximation is not valid for population sizes
ered the simpler case of four purely discrete stirhmli=0 in  larger than two to three cells. On the contrary we are cur-
Eq. 3)]. rently devising algorithms to reduce the bias in the informa-
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tion estimates and preliminary results seem to suggest iaput, and we have shown analytically that in the limit of a
much wider range of validity of the analytical approxima- noiseless, linear input-output transfer function the output in-
tion. A more detailed study comparing decoding to other alformation tends asymptotically to the input one. We have

gorithms will be published elsewhef28]. not, however, introduced a threshold in the input units, which
would be necessary for a fair comparison. In an independent
VII. DISCUSSION line of research, recent wofl8] has also quantified the con-

) ] . tribution to the mutual information, in a different model, of
_ We have attempted to clarify how information about mul- cypjc and higher order nonlinearities in the transfer function,
tidimensional stimuli, with both a continuous and a dlscreteoy means of a diagrammatic expansion in a noise parameter.
dimension, is transmitted from a population of units with a|n Ref.[13] it has been shown that the effect of a threshold in
known coding scheme, down to the next stage of processinghe input units on the input information results merely in a
Previous studies had focused on the mutual informatiotenormalization of the noise. The resulting effect on the out-
between input and output units in a two-layer thresholdyt information remains to be explored, possibly with similar
linear network either with learninfgL4] or with simple ran-  methods.
dom connection weights22]. Considering mixed continuous and discrete dimensions in
_ More recent investigations have tried to quantify the effi-our stimulus set, we had been wondering whether the infor-
ciency of a population of units in coding a set of discretemation loss in output depended on the presence or absence of
[15] or continuoug 16] correlates. The analysis in R¢LL5]  giscrete or continuous dimensions in the stimulus structure.
has been then generalized to the more realistic case of Muye have shown that for a fixed, finite level of noise this loss
tidimensional continuous and discrete correl4t3. _ does not depend significantly on the structure of the stimu-
This work correlates with both research streams, in anys put solely on the relative magnitude of input and output
effort to define a unique conceptual framework for popula-ngise, and on the position of the output threshold.
tion coding. The main difference with the second group of ¢ analytical efforts have been also motivated by the
studies is obviously the presence of the network linking inpufificulty to perform a simulation study for this specific
to output units. The main difference with the first two papersscheme of continuous rate coding in presence of several dis-
instead, is the analysis of a distinct mutual information quanyinct sources of quenched disorder. Nonetheless we have per-
tity: not between input and output units, but between correformed some simulations usingdecodingprocedure to es-
lates (“stimuli” ) and output units. In Ref.15] it had been  timate the information from simulated data both in input and
argued, for a numbe of purely discrete correlates, that the jn output. Our results confirm previous findings in that the
information about the stimuli regll_Jces to the information {istortion due to decoding grows with the population size, so
about the “reference” neural activity whel—o. The ref-  nat the simulations confirm the analytical prediction only for
erence activity is simply the mean response to a given stimug yery small number of cells. We are currently devising new
lus when the information is measured from the Va”ab|ecomputational methods to improve the match between the
noisy responses around that means; or it can be taken to %alytical and the simulation results.
the stored pattern of activity, when the retrieval of such pat-  Fyrther developments of this analysis include the evalua-
terns is considered, as in Réfl4]. True, the information ton of the output information in presence of learning, in line
about the stimuli saturates at the entropy of the stimulus sejyith [14], and with correlations in the firing of input units.
but for K— < this entropy diverges, only the linear termhh A recent work has shown that the interplay between short
is relevan{15], and the two quantities, information about the ang |ong range connectivities in the Hopfield model leads to
stimuli and information about the reference activity, coin-g deformation of the phase diagram with the appearance of
cide. novel phase$29]. It would be interesting to introduce short
Our present saddle-point calculation is only able to capand long range connections in our model, and to examine
ture, effectively, the mutual information that is linear in the how the coding efficiency of output neurons depends on the
number of input units, as mentioned above. It fails to de-nteraction between short and long range connections. This

scribe the approach to the saturating value, the entropy of thgj|| pe the object of future investigations.
set of correlates, be this finite or infinite. Therefore, ours is

close to a calculation of the information about a reference

activity, in our case, the activity of the input units. The re-

maining difference is that we can take into account, albeit We have enjoyed extensive discussions with sine

solely in the linear term, the dependencelofithrough the  Samengo and Elka Korutcheva. V.D.P. thanks Isaac Perez-

equation forA 2, Eq.(32)], without having to take the further Castillo for very useful comments. Partial support from Hu-

limit K—o0. man Frontier Science Program Grant No. RG 0110/1998-B
Due to the presence of a threshold and of a nonzero ougnd partial financial support from the Fund of Scientific

put noise the information in output is lower than that in Research, Flanders, Belgium are also acknowledged.
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